
© 2024 BlackBerry QNX. All Rights Reserved.

Virtualization:
Hypervisors, Containers and Device Abstraction

Randy Martin
Senior Technical Product Manager

© 2024 BlackBerry QNX. All Rights Reserved. 2

2016

QNX

engineering start

shared graphics

initiatives with

Android.

Jaguar XJ demo

@ CES2017

2019

OEMs start

standardizing on

native but

custom Android

2020

Beginning of Google

& QNX VirtIO

engineering

collaboration

2021

Google VirtIO

initial implementation

Cuttlefish & Android 11

= slow

Beta of automotive

version of VirtIO

“Trout”

2024

Next generation

cockpits adopt full

VirtIO in support of

cloud, multi-SoC and

global platform

strategies

OEMs asking for

standard Android not

SoC custom Android

... and more.

2022

Official release of

automotive version of

VirtIO “Trout”

VirtIO components

appear in production

vehicles (e.g. VirtIO

Video & VirtIO

Sound)

VirtIO

The Evolution of VIRTIO and QNX

© 2024 BlackBerry QNX. All Rights Reserved. 3

1.Service OS in its own Virtual Machine

2.Service OS in the Hypervisor Host

Hypervisor Design is still the most important choice

© 2024 BlackBerry QNX. All Rights Reserved. 4

Hardware

Hypervisor

Driver

support

(pass-

through)

Guest drivers

virtual

Service OS / Domain0

(usually a specialized Yocto build)

Proprietary

Sharing

My Guest OS

Selective

pass-through

to hardware

virtual machinevirtual machine

VIRTIO

Service OS exists in its own virtual machine

© 2024 BlackBerry QNX. All Rights Reserved. 5

Hardware

Hypervisor
Driver

support

Guest drivers

virtual

Proprietary

Sharing

My Guest OS

Selective

pass-through

to hardware

virtual machine

VIRTIO

Service OS exists in the Hypervisor Host

© 2024 BlackBerry QNX. All Rights Reserved. 6

1. Want audio available (chime) as soon as target boots (< 1second)

2. Want Audio to be free of any noticeable affects when a barge-in or safety chime is

needed regardless of what is currently playing

3. Ability to easily add in new features such as multi-zone voice capture, in-car

communications, new media processing features such as Dolby Atmos etc.

4. Want to be able to move software between SoC vendors. Do not want to be tied to

a specific DSP or hardware solution

5. Cloud-first design and test

Sharing Example: Audio Requirements (Acoustics)

© 2024 BlackBerry QNX. All Rights Reserved. 7

Emulation

QNX Sound
connector

QNX Audio Stack (io-snd)

Cloud-enabled
Audio Driver

QNX Host

Android Guest

Early Chimes
Audio App

Audio Policy
Manager

Android audio
HAL

Audio service
VIRTIO

ICCVoice AVAS Media TCP

Android Audio
App

Vehicle
Inputs

VIRTIO

VIRTIO (side channel)

Desktop Tooling

Active before
guest has
booted

Acoustics in the Cloud

© 2024 BlackBerry QNX. All Rights Reserved. 8

Acoustics on the SoC

QNX Sound
connector

QNX Audio Stack (io-snd)

QNX Host

Android Guest

Early Chimes
Audio App

Audio Policy
Manager

Android audio
HAL

Audio service
VIRTIO

ICCVoice AVAS Media

Android Audio
App

VIRTIO

Desktop Tooling

TCP

or

serial

SoC Audio Driver
Vehicle
Inputs

VIRTIO (side channel)

Active before
guest has
booted

Acoustics on the SoC with DSP Support

9
© 2024 BlackBerry QNX. All Rights Reserved.

QNX Audio Stack (io-snd)

QNX Host

Android Guest

Early Chimes
Audio App

Android audio
HAL

Audio service
VIRTIO

Voice AVAS Media

TCP
or
serial

SoC Audio Driver

DSP support

Android Audio
App

ICC Media

VIRTIO

Desktop Tooling

QNX Sound
connector

Vehicle
Inputs

VIRTIO (side channel)

Active before
guest has
booted

Audio Policy
Manager

© 2024 BlackBerry QNX. All Rights Reserved. 10

Hardware

Hypervisor

Driver

support

(pass-

through)

Guest drivers

virtual

Service OS / Domain0

(usually a specialized Yocto build)

Proprietary

Sharing

My Guest OS

Selective

pass-through

to hardware

virtual machinevirtual machine

VIRTIO

How would I build audio sharing in a Service OS design?

© 2024 BlackBerry QNX. All Rights Reserved. 11

Hardware

Hypervisor

Driver

support

(pass-

through)

Guest drivers

virtual

Service OS / Domain0

(usually a specialized Yocto build)

Proprietary

Sharing

My Guest OS

Selective

pass-through

to hardware

virtual machinevirtual machine

VIRTIO

Early Chimes
Audio App

?

How would I build audio sharing in a Service OS design?

© 2024 BlackBerry QNX. All Rights Reserved. 12

QNX Example: Audio Sharing Detail View

© 2024 BlackBerry QNX. All Rights Reserved. 13

• More devices: VIRTIO and non-VIRTIO

– Virtio-media, USB over IP (cloud), Cloud Bluetooth, DRM (Widevine L1),

machine learning, Android SDV

• More hardware

– Next generation SoC support for both ARM and x86 partners

• Virtualization Host Extensions

• Safety

• SDP8 features: core clusters, jitter-free scheduling, interrupt processing

Hypervisor Futures

© 2024 BlackBerry QNX. All Rights Reserved. 14

Virtualization Host Extensions (VHE)

SOC

• Many context-switches between EL1 and EL2

EL1

EL2

EL0 Hypervisor Host
OS Userspace

Hypervisor

Guest OS
Userspace

Hypervisor Host
OS Kernel

Guest OS
Kernel

SOC

Hypervisor Host
OS Userspace

Hypervisor

Guest OS
Userspace

Hypervisor Host
OS Kernel

Guest OS
Kernel

Without VHE With VHE

• Host OS Kernel runs in EL2: less context switching
• Estimated at 20% typical performance boost

• QNX Hypervisor benefits from turning on VHE
• SDP8 version only

© 2024 BlackBerry QNX. All Rights Reserved.

Containers

© 2024 BlackBerry QNX. All Rights Reserved. 16

Container

Operating

System

Virtual Machine

Hypervisor-enabled

Operating System

Operating systems must match:

e.g. QNX Container on QNX OS,

Linux Container on Linux OS.

Container holds a set of

programs that run in a restricted

environment

Hardware must match between virtual

machine and operating system:

But Guest OS running in virtual

machine can be a different OS than

underlying Operating System, but

must be same hardware.

OS Virtualization HW Virtualization

Virtual Machine

Operating System (either hypervisor-enabled

or not)

Emulator can present different hardware to the operating

system than real hardware.

A Virtual machine will use HW virtualization on top of

emulator.

Container will use OS virtualization on top of emulator.

HW Emulation

Hardware Hardware

Guest

Hardware

Emulator

Container
Guest

vs vs

Container Model Virtual Machine Model Emulation Model

What is a Container?

© 2024 BlackBerry QNX. All Rights Reserved. 17

As per VDC Research Report 2023:

• Over 50% of automotive OEMs either already have or expect to have OTA (Over-The-

Air) software support within next 3 years

• ISO 21434 (Security update requirements) will be a force driving the adoption of

containers used for OTA

Kubernetes is lead orchestration software (as the base connection agent for most tool

solutions)

• Source

• https://www.datatronic.hu/en/containerisation-in-automotive-industry/

Container Trends

https://www.datatronic.hu/en/containerisation-in-automotive-industry/

© 2024 BlackBerry QNX. All Rights Reserved. 18

Revenue is in millions USD

Automotive

‘Container market’

expected to grow

from $26M in 2022

to $59M in 2027.

Includes runtime

environments and

services

© 2024 BlackBerry QNX. All Rights Reserved. 19

• Container

• “Containers are executable units of software that package application code along with its libraries and

dependencies. They allow code to run in any computing environment, whether it be desktop, traditional

IT or cloud infrastructure.”

• OCI Open Container Initiative https://opencontainers.org/

• an open governance structure for creating open industry standards around container formats and

runtimes (specifications are free to all)

• Docker www.docker.com

• an ‘open’ platform for developing, shipping, and running applications

• Commercially licensed via subscription. Free options available for personal use only.

• Kubernetes https://Kubernetes.io

• open-source system for automating deployment, scaling, and management of containerized

applications (Apache v2, free to all)

• Uses CRI Container Runtime Interface. Specific to Kubernetes.

https://kubernetes.io/docs/concepts/architecture/cri/

• Allows any vendor to support Kubernetes orchestration

• CRI-O (Orchestrator) is the implementation

Glossary

https://opencontainers.org/
http://www.docker.com/
https://kubernetes.io/

© 2024 BlackBerry QNX. All Rights Reserved. 20

3rd Parties are already building

container-centric models for the

edge:

e.g. Mimik (edgeEngine)

Support OCI-compliant

containers

Embedded software vendors

are promoting containers:

Some vendors claim OCI-

compliance

‘real-time containers’

Kubernetes control plane

support

Usage cases are changing:

• Most involve the deployment

mechanism (i.e. OTA updates)

• Edge-based orchestration

• Micro-services

• Runtime constrained

environments

Engineering team awareness is

changing toward use of containers:

• Why not just use a light-weight

virtual machine? When and why

would an embedded system need

containers?

• The value of containers is increasing

Linux (all variants) have

containers:

Many solutions are already

used in development

environments.

Wanting to leverage this

knowledge in embedded

edge device

Containers

1.

2. 3.

4.
5.

Forces Driving Containers Adoption in Embedded Systems

© 2024 BlackBerry QNX. All Rights Reserved. 21

Packaging Solution: Bundle the necessary software artifacts into a contained environment for testing

and deployment.

Over the Air Updates: Utilize entire ecosystem of container orchestration tools like Kubernetes to

manage deployment to Target.

Restricted Runtime: Run a set of processes in a restricted environment.

CI/CD Pipelines: Develop and test in the Cloud at scale; code deployed in containers can be easily

integrated with customer's CI/CD pipeline designed using open-source tools and frameworks.

Isolated In-Field Testing: Deploy beta version of software stack to target without interfering in existing

processes. Isolation across container instances ensure changes in one do not affect the others.

SBOMs: Software dependencies embedded within the container make generating an SBOM (Software Bill

of Materials) more convenient.

Example Use Cases for Containers in Embedded

© 2024 BlackBerry QNX. All Rights Reserved. 22

• Namespaces

• Filesystem isolation (restricted view from within container)

• Container has its own hostname (Nodename and domainname)

• Isolation of shared memory objects and message queues per

container

• Unique process view of processes per container

• Separate virtual network stack, firewall, routing

• Root operation available within container but not root access to

outside

• Control Groups (cgroups)

• Allocation/restriction of

• CPU time

• Core allocation

• Device allocation

• System memory

• Network bandwidth

• Monitoring

• Disk bandwidth (limits on input/output access to block devices)

• SELinux

• Security policy provides secure separation of containers

• Including virtual devices (sVirt)

Linux Containers used as Foundation for Embedded Requirements

© 2024 BlackBerry QNX. All Rights Reserved. 23

Manages the complete

container lifecycle of its

host system, from image

transfer and storage to

container execution and

supervision to low-level

storage to network

attachments and beyond.

But how to bring this to Embedded?
Linux/Windows ‘containered’ example: millions of lines of code

© 2024 BlackBerry QNX. All Rights Reserved.

Solution Overview

QNX Containers

24

25

© 2024 BlackBerry QNX. All Rights Reserved.

QNX Containers provide a QNX-based edge device with a standards-based environment for the running and management of

container technology.

Standards-based solution:

• OCI compliant.

• Kubernetes-based toolchains for creation, deployment and management.

• Docker (industry standard) repositories are used for remote storage and retrieval. Local storage is also supported.

Follows the restrictions and security features available with QNX SDP8 including restrictions on networking, filesystems,

devices, memory, communications, access control and CPU.

QNX Containers has its own TARA (Threat and Risk Analysis) as per our product release policy and ISO 21434 compliance.

This restriction set provides highly secure and isolated embedded containers while still maintaining the high performance

and hard realtime nature of the QNX SDP8 operating system.

QNX Containers co-exist with the QNX Hypervisor environment, allowing for simultaneous use of both virtual machines

and containers.

QNX Containers are extendable without compromising existing design.

A safety-certified version is planned for future product.

QNX Containers: Summary

© 2024 BlackBerry QNX. All Rights Reserved.

System Architecture

QNX CONTAINERS

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

Legend:

External Control Plane

External Image Registry

QNX Long-Running Process

QNX Short-Running Process

User Container Code

User Input

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

Kubernetes Orchestrator

QNX CONTAINERS

• Chose an orchestrator-driven

solution

• Orchestration tools manage multiple

nodes and automate provisioning,

deployment, networking, scaling,

availability and lifecycle

management of containers across

nodes

• Kubernetes is a widely adopted

open-source container orchestration

tool popular in cloud computing

• Typically hosted separate and

designed to be used as a control

plane of a multi-node container

solution

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

QNX CONTAINERS

• Third party server housing a

collection of container image

repositories

• Provides developers the means to

easily store / share container

images, while managing access

control, permissions and

authentication

• Docker Hub and AWS Elastic

Container Registry (ECR) are

popular examples

Container Image Registry

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

QNX Kubernetes Agent

QNX CONTAINERS

• Managed Kubernetes nodes require an

agent, a Kubelet (Qubelet in QNX)

• Responsible for communication with

Kubernetes controller for creating and

running pods

• Pods are the smallest unit of configuration,

representing a set of one or more containers

and their configurations

• RESTful APIs are used for communication

(representational state transfer)

• Listens for new pod configuration messages

from the control plane and forwards requests

through QNX resmgr framework to the QNX

Container Manager

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

QNX Container Manager

QNX CONTAINERS

• Responsible for the management of

containers on a single node (QNX

Runtime Environment)

• Listens and acts on control messages

from the orchestration control plane

• Interacts with the Container Image

Library for image management

• Interacts with the Low-level Container

Runtime for runtime management

• Monitors container states and notifies the

control plane of any updates

• Qubelet separation from Qcmgr hides

K8s details and allows for future support

of other orchestration tools

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

Command Line Interface (CLI) Tool

QNX CONTAINERS

• Command and Control CLI tool to

manage container functionality

• Designed to utilize the same resource

manager interface between Qubelet and

the Container Manager

• Provided as an option for users who want

to either:

- Use the QNX Containers solution

without Kubernetes orchestration

and/or

- Have an on-device method to

manage containers without the need

for external access

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

Container Image Library

QNX CONTAINERS

• Library responsible for downloading and

managing images from a supported

container registry

• Supports Docker Registry HTTP API V2

- Any Private/Public AWS ECR

- Docker Hub public registry

• Supports standard image formats

- Docker Image V2, Schema 2

- OCI Image Specification

• Uses local store to cache downloaded

images and provide on-target access

• Once downloaded, image is unpacked

into an Open Container Initiative (OCI)

runtime bundle for the Low-level

Container Runtime to consume

© 2024 BlackBerry QNX. All Rights Reserved.

Control Plane

QNX Environment
REST API

HTTP API

Container Registry

Low-level Container Runtime

QNX CONTAINERS

• Low level OCI-compliant component for

running containers

• Responsible for creation and deletion of

the container environment within the

QNX system

• This environment consists of:

- File system isolation

- CPU and Memory Isolation

- Launching and monitoring of

container process

- Handling container process logging

- Stopping container process and

cleaning up resources

© 2024 BlackBerry QNX. All Rights Reserved. 34

• QNX is building first product view this year

• Non-safety version for first release

• SDP 8 only

• Safety version following behind non-safety version (after release of QNX OS for

Safety 8.0)

• Early Access program to be announced

• If interested, please contact your QNX sales team

QNX Containers Roadmap

© 2024 BlackBerry QNX. All Rights Reserved.

Device Abstraction

© 2024 BlackBerry QNX. All Rights Reserved. 36
36

Vehicle

ADAS

ABS

IsEnabled

dSPACE

Connector

Vector CAN

Connector

Signal

Consumer

VSOME/IP

Adaptor

gRPC/vsock

Adaptor

SPI

Connector

Signal

Service

VSOME/IP

Connector

COVESA VSS*

...

Exposes vehicle data

in common form

(COVESA VSS)

Integrates vehicle data

into distinct systems

(e.g., cluster, IVI, …)

Support adaptation to

different deployments

and architectures

(e.g., Vera OS, AAOS,

Android SDV, …)

Connect vehicle data sources and

interfaces (hardware, services,

simulation sources, …)

Caches vehicle data and

enables both synchronous “get”

and asynchronous ”subscribe”

Manages fine grained

permission and access control

to vehicle data

Enables advanced filtering on

subscriptions (e.g., filter by rate,

filter by value)

Support the development of

Data Adaptors and Connectors

with intuitive APIs and tooling

Supports reading

from sensors and

writing to

actuators

Uses vehicle

data directly

Vehicle-HALCluster

Middleware

& IDC-HAL

CANsimulation SPI

COMMON SIGNAL ACCESS

VSOME/IP

*Connected Vehicle Systems
Alliance Vehicle Signal
Specification

QNX Signal Service

© 2024 BlackBerry QNX. All Rights Reserved. 3737

Vehicle

ADAS

ABS

IsEnabled

• Exposes signals via standard POSIX interfaces

that reflect the VSS tree as directory structure

• Access using open/select/read/write/close

• Simple intuitive interface for creating Data

Consumers, Adaptors and Connectors

• High performance IPC

"Vehicle": {

 "children": {

 ”ADAS": {

 “children”: {

 ”ABS": {

 "children": {

 ”IsEnabled": {

 "datatype": "Boolean”,

 "description": "Indicates if ABS is

 enabled. True = Enabled. False = Disabled.",

 "type": "actuator",

 "x-euuid": "8589e0a5c2773ba0",

 "x-read-permission": "Vehicle.ADAS.READ",

 "x-write-permission": "Vehicle.ADAS.WRITE"

…

• Open Source, standards-based tooling for defining and

customizing a signal catalog

• Signals defined as tree structure with human readable path

names (

• e.g., Vehicle.ADAS.ABS.IsEnabled)

• Default definitions for ~2000 signals and growing

• Loads the COVESA signal catalog

• Manages subscriptions//actuation

• Manages signal access/permissions

• Data Connectors and publishing

COVESA VSS

POSIX INTERFACE

/dev/signal/

 Vehicle/

 ADAS/

 ABS/

 IsEnabled

 IsEngaged

 IsError

 CruiseControl/

 IsActive

 IsEnabled

 IsError

 SpeedSet

SIGNAL SERVICE POSIX INTERFACE

int fd = open(“/dev/signal/Vehicle/Cabin/HVAC/AmbientAirTemperature”,

O_RDONLY, O_NONBLOCK);

…

select(nfds, &readfds, null, null, &tv);

…

int num_bytes = read(fd, buffer, len);

int fd = open(“/dev/signal/Vehicle/Cabin/HVAC/AmbientAirTemperature”,

O_WRONLY);

…

int num_bytes = write(fd, value, len);

…

Signal Access Signal Publishing

Example

QNX Signal Service

© 2024 BlackBerry QNX. All Rights Reserved. 38

Software will be the key; hardware independent design

Desktop PC (in vehicle trunk)

1990s

Windows/Linux Test and Research

A-Core, M-Core, R-Core, DSP

2010s to today

Mix of software components
with safety and non-safety

SaaS (Chiplet)

Future

Safety-certified hypervisor-
enabled RTOS becomes the
most important component.
Narrow to general AI on general-
purpose SoC with general-
purpose instruction set

Summary: Where Does Virtualization Go from Here?

© 2024 BlackBerry QNX. All Rights Reserved. 39

Thank you

	Slide templates
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Acoustics on the SoC with DSP Support
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

